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Abstract-An analytical investigation of heat transfer in a counterflow spiral plate heat exchanger is the 
subject of this study. To evaluate the thermal performance of this heat exchanger, a new dimensionless 
criterion number CN is proposed. For any heat capacity rate ratio and for an arbitrary (even) number of 
turns one uniform, universal and simple formula is developed to calculate the mean temperature difference 
correction factor F of a spiral plate heat exchanger: F = In (1 + CN’)/CN 2. The accuracy of the theory 

increases with the growing number of channels. 

1. INTRODUCTION 

ESSENTIAL advantages of spiral plate heat exchangers 
(SHE) include high thermal effectiveness, compact 
design and very little inclination to fouling due to only 
one cross-section for each fluid (see Fig. 1). 

The thermal theory of SHE, compared to theories 
of heat exchangers with other flow arrangements, is 
insufficiently represented in the literature. Because of 
the wide application of SHE in industry, more atten- 
tion should be paid to this exchanger, to its theory 
of operation and especially to developing simple but 
sufficiently exact forms for the calculation of its effec- 
tiveness if possible. In the present paper, the authors 
attempt to accomplish the above. 

In order to provide satisfactory information on the 
thermal performance of SHE, as required by a 
designer, it is necessary to develop adequate formulas 
and prescriptions that will allow to take into account 
its thermodynamic limits. Particularly, this limit refers 
to the maximum of effectiveness. The special thermal 
behaviour of SHE, namely the characteristic maxi- 
mum of effectiveness occurring with growing NTU 

to very high values (10 and more), was noticed for 
the first time on the basis of exact theory in ref. [l] 
and then confirmed in refs. [2-4]. 

The problem of the thermal calculation of SHE 
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FIG. 1. View of counterflow spiral plate heat exchanger. 

has been treated in the literature analytically [ 1, 5-71, 
numerically [8], numerically with some experiments 
[9] and analytically with some heuristic attempts 
[IO, 1 I]. 

All these solutions have more or less disadvantages 
due to : 

l lack of sufficient accuracy either for a small num- 
ber of turns or for large NTUs and for the reason that 
this accuracy is estimated only qualitatively [5,6] ; 

l too arduous computational procedures for engin- 
eering design purposes [I, 7, 81; 

l insufficient theoretical records [ 10, 111; 
l necessity of iterative adjustment for the initial 

vector of temperatures by using the Runge-Kutta 
numerical method of integration [9, lo]. 

2. IDENTIFICATION OF THE PROBLEM AND 

FORMULATION OF TASKS 

2.1. Basic assumptions 
The problem is solved under the general assump- 

tions valid for heat exchangers and well known from 
literature [12,13]. But the additional assumptions 
which are typical for SHEs have to be supplied or 
some standard assumptions of particular importance 
to the problem should be emphasized : 

l Due to different heat transfer conditions, SHE 
was divided into three parts : the innermost part with 
two channels where heat flows only through one wall, 
the middle part with turns, which usually occupy the 
main volume of exchanger performing its main duty 
where heat penetrates both walls, and the outermost 
parts with two channels where heat is transferred only 
through one wall. 

l Flow is in countercurrent. 
a Arrangement of fluids’ flow in the exchanger is as 

shown in Fig. 2. 
l The shape of the spiral is optionally assumed to 

be the spiral of Archimedes. 
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NOMENCLATURE 

4 cross-sectional area of flow channel, h,b’ x coordinate proportional to distance 
b-4 measured along main spiral, 

A0 total heat transfer surface area [m’] WX,‘~+ I/JO. 
b’ channel spacing (optionally chosen as 

unit of length) [m] 
c mean heat capacity rate, ,/(C’,C,,) Greek symbols 

WK-‘I A(r) local temperature difference of fluids 
CN criterion number, flowing on both sides of the main 

(JR+ ~IJR)NTh/W,IA,) spiral, t,(r) -t,,(r) 

F log mean temperature difference 6(r) local temperature difference of fluids 
correction factor flowing on both sides of the side spiral, 

h3 height of exchanger t,(r+l)--I,,@-1) 
k overall heat transfer coefficient 0 mean temperature difference 

wrn-‘K-‘1 P auxiliary parameter in equations (6), (8), 
n number of channels equal to double (2/J/)( JR- 11 JRM JR+ 11 JR)’ 

number of turns cp angle in coordinate system (r, cp) 

NTU number of transfer units (mean value), (see Fig. 3) 
kA,IC 9 cross-sectional number of transfer units 

P effectiveness, dimensionless temperature (mean value), 2xkAJC 
change w 
heat flux 8, related to angle cp (see Fig. 

auxiliary parameter in equations (6), (8), 
4 

2) d&dq [w rad- ‘1 
(JR+ 11 JNP. 

R heat capacity rate ratio for counterflow, 
G/G, Subscripts 

I dimensionless radius, r’ real radius, r’/b’ i inlet 
I dimensionless temperature, t’ real 

; 
outlet 

temperature of fluid I or II, fluid I 
(I’- ml(~;.i- ~;l.i) II fluid II. 

l Fluids’are completely mixed in the radial and 
axial directions within the flow channel. Thus, in 

l There are no heat losses to the environment. 
l Distance studs are not taken into account. 

cross-section chosen at a fixed angle, the temperature 
changes step by step from channel to channel (see Fig. 

The theory presented in this paper performs the 
?\ conditions which are fulfilled in the middle Dart of the 
‘I. 

l In a single channel the fluid temperature is a 
exchanger. Therefore, the higher the number of 

function of the angle cp or radius r of the Archimedes’ 
spiral only. 

l Hot fluid enters the exchanger in the centre of the 
apparatus and cold fluid flows in at the outermost 
channel. 

l The number of channels (coils) in SHE is even.? 
l Flows of fluid and heat are steady. 
l Distances between walls of both channels with 

hot and cold fluids are equal. 
l Influence of outermost turn is considered approxi- 

mately : it is analysed in the same manner as turns in 
the middle part of SHE. 

l Overall heat transfer coefficient k is constant 
throughout the exchanger. 

t The theory itself is valid for both even and odd numbers 
of channels. However, the accessible data set based on the 
exact theory [I, 21 which has been used as a reference level 
to evaluate the accuracy of present theory was produced for 
an even number of channels. 

FIG. 2. Arrangement of flows in countercurrent spiral heat 
exchanger. 
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FIG. 3. Temperatures and components of energy balance in 
elementary wedge of SHE. 

channels in SHE the better this theory will render 
properties of the physical model of the apparatus. 

All considerations carried out in this paper refer to 
the quantities which are expressed in dimensionless 
forms and listed in the nomenclature. 

2.2. Aim of the paper 
The purpose of the present paper is to provide a 

simple theory of countercurrent spiral plate heat 
exchanger and at the same time to develop a straight- 
forward formula for the log mean temperature differ- 
ence correction factor F which is usually applied to 
the thermal design of these exchangers. The theory 
should render the special feature of SHE, i.e. the 
maximum of its effectiveness for very high quantities 
of NTU. 

3. ANALYTICAL FORMULATION OF THE 
PROBLEM 

3.1. Object of investigations 
The temperatures of fluids flowing on both sides of 

a partition wall in a heat exchanger vary considerably. 
The mean value of their difference is one of the most 
important factors characterizing qualitatively any 
heat exchanger. This difference will be an object of 
search. 

In SHE there are two walls twisted spirally, called 
the ‘main’ and the ‘side’ spiral which separate fluids. 

Thus, it is useful to carry out the thermal analysis of 
temperature distribution using two different functions 
which represent the local temperature difference A and 
6, defined as the surplus of temperature of hot fluid 
over fluid temperatures on both sides. 

These differences of temperature depend upon each 
other; however, for convenience they will be sep- 
arately derived as two different quantities and will 
later be combined with each other. 

3.2. Components of energy balance equations 
The components of heat fluxes passing through the 

wall may be represented by the expressions shown in 
Fig. 3, in which t, and t,, are the fluid temperatures to 
be determined. 

Choosing as a positive direction of cp, the flow direc- 
tion of C,, one obtains for the part of the channel 
between the radii r - 1 and r 

-c dtl(r-5) 
I ___ = qj.j- I + q,j+ I 

dqn 
(1) 

and for the part of the channel between the radii r and 
r+I 

-c dh(r+i) 
II 

dv 
= %,I+ I +q,+ IJ+2. (2) 

It is convenient to change slightly the notation of 
temperatures. The function of temperature t, (r - :) 
and t,,(r+i) will be further denoted as t,(r) and t,,(r), 
respectively. Applying the formula for the spiral of 
Archimedes r’ = &,+b’go/n or using reduced radii 
r = r,,+,++, the differential dq in equations (l), (2) 
is: dq = T[ dr. Bearing in mind the new notation of 
the temperatures and introducing formulas for : q,J- ,, 
qjJ+ ,, q,+ Ij+ 2 from Fig. 3 into equations (1) and (2) 
the following system of differential difference equa- 
tions is obtained : 

-C, z = kh,b’{r[t,(r)-t,,(r)] 

-C II 2 = kh,b’{r[t,(r) - t,,(r)] 

+(r+1)[t,(r+2)-tl,(r)lJ (3) 

with the boundary conditions for the fluid tem- 
peratures at the inlet: t,(ri) = 1 and t,,(r,,) = 0, 
according to Figs. 1 and 2. 

3.3. Energy balance equations for the main spiral 
By simple transformation and using the symbols 

for $, A, 6 and R listed in the nomenclature, equations 
(3) can be simplified to 

dtl (4 
2JR dr 

-+$rA(r)+(r-1)$&r-1) =0 

2 dtdr) - - +$rA(r)+(r+ l)r,M(r+ 1) = 0. 
JR dr 

(4) 
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Let one transform the set of equations (4) as follows. 
Divide the first equation and multiply the second equa- 
tion by JR, respectively. Subtract the second equation 
from the first. Thus 

-(r+ 1)&r+ 1),/R = 0. (5) 

Bearing in mind that r >> 1, expand the function 
f(r + s) = (r f &)6(r f s) up to the third term, according 
to Taylor’s general theorem : 

and put finally E = 1. 
Substituting the last formula in equation (5) and 

rearranging the equation to cumulate all constant par- 
ameters in front of functions A, S or their derivatives, 
one arrives at the relation 

2d$ -(JR-l/JR) rA(r)+r&r)+ 
d’[r&r)] 
2 

-(JR+l,JR)F = 0. 

To reduce the number of parameters let one introduce 
the new independent variable x and the auxiliary par- 
ameter p defined in the nomenclature. This allows us 
to rewrite the last equation with required functions A 
and 6 as follows : 

W-4 4x&x)1 
__ -/W(x) + WI - dx dx 

The boundary conditions are : A(xi) = Ai, &xi) = ai. 

3.4. Energy balance equations for the side spiral 
To formulate the second equation with the required 

functions A(x) and 6(x), it is necessary to write the 
basic system of difference-differential equations (4) 
again, but for the new independent variable r as coor- 
dinate, that is, with moved steps: one forward r+ 1 
and one backward r - 1 for the first and second equa- 
tion in system (4), respectively. 

This procedure is equivalent to the previous 
notation of energy balance equations, for the set of 
radii r - 1, r and r + 1, where r is the reference radius. 
However, now the set of energy balance equations 
relates to the radius r lying on the second spiral, i.e. 
on the side spiral (see Fig. 2), whereas the previous 
notation has been referred to the main spiral. 

This procedure has a clear geometrical and physical 
interpretation. If the first set of equations (4) was 
selected optionally on any radial cross-section of SHE, 
the second refers to the cross-section and radius r 

which is turned 180” around SHE’s axis in reference 
to prior. Thus 

dt,(r+ 1) 
2JRT +(r+ l)IC/A(r+ l)+$r6(r) = 0 

2 dt,,(r- 1) 
JRdr 

+(r- l)$A(r- l)+$r&r) = 0. (7) 

The last system of energy balance equations should 
be treated in a similar manner to equations (5), but this 
time functions f(r + 1) = (r + l)A(r + 1) are expanded 
into a Taylor’s series. As a consequence one arrives 
at the relation 

-wz+2p d*bW)l 
2 dx2 = 0. (8) 

The boundary conditions are the same as for equation 
(6). 

3.5. Local temperature diffi?rences in SHE 
Parameter $ is small in comparison to NTU, or 

NTCJ,,, which rarely exceed 10. In engineering practice 
the value of NTU would increase up to about 4 or 5. 
Because AC/A, CC 1, in almost all cases J/ CC I. 

This assumption (0 < IJ CC 1) is physically justified 
for a high number n of channels for which cases the 
following theory is valid. 

Due to the small quantity I(/ the terms with second 
derivative in equations (6) and (8) having the par- 
ameters w*$*p - 1/1 in front can be neglected. Thus, 
the system of energy balance equations (6) and (8) 
simplifies to 

W-4 dWW1 __ -px[A(x)+&x)]- dx = 0 dx 

W441 
F -~~[A(x)+~(x)]+ dx = 0 . (9) 

The boundary conditions stay as for equations (6) 
and (8). 

The purpose of the above procedure was to trans- 
form the difference-differential equations (6) and 
(8) into the differential equations (9) (in any order), 
without inconvenient differences 2s independent 
variables. 

Solution of the system in equation (9) is achieved 
in the following way : subtracting both equations and 
integrating yields 

A(x)-S(x)-x[A(x)+S(x)l 

= Ai-bi-xi(Ai +Si) = const. 

The sum of function [A(x)+&x)] will be searched 
for because it is useful in calculations of the effective- 
ness Pi. Adding both equations (9) and replacing 
A(x) -6(x) using the last relation gives 
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4U+x2)[AW+W1~ -2px~A(x)+6(x)1 
dx 

= -[Ai-~i-xi(Ai+6i)]. (10) 

An additional assumption refers to the radius rminr 
which should be small enough to allow neglect of the 
term with Xi = $ori in the last equation. 

As a consequence of the assumptions regarding the 
high number n(A., x Si) and the small quantity of the 
minimal radius rminr the constant on the right-hand 
side of equation (10) can be ignored. 

The solution of equation (10) is readily obtainable. 
The final function A(x) +6(x) is 

where Gi = (1 +x2) ‘--)r is a constant computed for 
radius ri at the inlet to the exchanger which does not 
differ much from 1. 

On the basis of equation (11) and previous con- 
siderations it is easy to see that the function A(x) 
for the local temperature difference between fluids 
separated by the main partition wall is proportional 
to the auxiliary function G,(x) which is defined as 
follows : 

G,(x) = 1+x2 1+x (I +x2)‘. 

The function G,(x) is plotted against the independent 
variable x in Fig. 4. 

4. EFFECTIVENESS OF SHE 

The effectiveness P, for SHE can be calculated 
according to a general formula 

s 

‘0 
P, = - dt, = 1 - tl (r,) 

‘0 

where ri and r, = ri + n are the radii of bent wails : the 
smallest and the largest, respectively, through which 
heat is transferred between both fluids (see Fig. 2) and 
II = 1. 

Further consideration will refer to the first form in 
equations (4) which allows one to express the deriva- 
tive of temperature as 

dt, (4 -= 
dr - & WrW) + (r- lW(r- 1)l (13) 

= - $g $r[A(r)+cWl. 

Integration of equation (13) together with solution 
(11) leads to 

PI x AiRpGi/(2JlO*JR) (14) 

where . 

E, = [(1+~,2)“-(1+$)~]//~ (1% 

1.4 

G,(x) 

1.0 

0.6 

0.6 

0.4 

0.2 

C-l” _.I 

0.0 1.0 2.0 x 

x=~(fi+t,J-E)r 

FIG. 4. Auxiliary function G,(x) proportional to the local 
temperature difference A(x) of fluids separated by the main 

spiral. 

Putting expression (14) into equity Ai+PII = 1 or 
Ai + P,R = 1, which are well known from the literature 
[12, 131, one finds 

Ai = l/(l+eR), and P, = e/(l+eR) (16) 

where e = EpGi/(2$02 JR). 
Introducing definition (15) into a formula for e 

e= {[(l+x~)/(l+x:)]“-l}(l+xf)/(R-1) 

and applying the last result to equation (16) after 
simple manipulations one gets the form for effec- 
tiveness P, of SHE : 

P, = 

1 -exp {fi In [(l +x,2)/(1 +x2)]} 
1-Rexp{~ln[(l+x~)/(1+~~)]}+(R-l)x~/(l+~~)’ 

(17) 

The exponent in form (17) consists of two components 
which should be analysed step by step. 

For further analysis some auxiliary parameters are 
needed.t$ First component /J 

t Quotient of areas A,/A,: the definitions listed in the 
nomenclature lead to the following expression : 

2nAJA, = $/NTU. (4 

For any spiral with the arrangement of flows shown in Fig. 
2 and for known function r(rp) a forin 

is in force. 
Marked intervals of integration can be easily seen in Fig. 

2. Applying the differential dq = 1~ dr, valid for the spiral of 
Archimedes, and integrating yields 

43 - = ri x4 -rf-r,-ri = (ro+fi)(ro-ri-I) 

= (n- l)(n+2ri). (b) 

tAnother auxiliary relation, which refers to cross-sec- 
tional areas in SHE is useful 

(C) 
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IL= $JR-VJR)I(JR+IIJR) 

= (R-I)NTU,/CN2 

where 

CN= (JR+ I/ JR)NTUJ(EA,IA,). (18) 

This number is characteristic for SHE and therefore 
it is proposed to recognize CN as the dimensionless 
criterion number for the countercurrent spiral heat 
exchanger. 

The second term of exponent with In function con- 
tains an independent variable which can be expressed 
as follows : 

(1 +X:)/( 1 +X,2) = 1 +(x:-.$)/(1 +X,2) 

and 

.KZ - .K’ I+& 
I+.r,z 

= CN2T 
1+x-; 

If the cross-sectional number of transfer units $ or 
reduced radius ri at inlet are so small that quantity 
si can be neglected in comparison to 1 or X, then 
for realistic quantities of ratio R the term (R - 1) x 
x,?/( 1 +x/) can also be ignored. 

For the ratio R = 1, this term has to be left out for 
any quantity of minimal radius rir but for very high 
or very small quantities R this is not allowed due to 
the parameter o which, in accordance with definition 
.Y = $wr, includes this variable. Now, let one look 
closer at formula (17). It is easy to notice that equation 
(17) without the already ignored term has the same 
structure as the formula for effectiveness P, in the true 
countercurrent heat exchanger. 

The exponent in equation (17) is equal to the prod- 
uct (R- l)NTU, and the log mean temperature 
difference correction factor 

F=ln[l+(l+-&)CN’]/CN’. (19) 

For a high number of channels n and under the sim- 
plifications mentioned in Section I, the form (19) for 
the F correction factor in SHE can be written as 

F= ln(l+CN2)/CN2. (20) 

The function F is plotted against CN in Fig. 5. 

5. CRITERION NUMBER 

Returning to form (18), it is easy to note that the 
criterion number CN can be rewritten using both 
values of NTU, and NTU,,. This yields the formula 

CN= (NTU,+NTU,,)J(aA,IA,). (21) 

From basic literature [12,13] it is known that for the 
true cocurrent heat exchanger the sum of NTU, and 
NTU,, is an argument in the formula for its effec- 

1 .o 

F 

0.8 

0.6 

0.4 

0.2 ----CN=(NTU, +NTU,,) Jx--- 

I I I I I I I I 

0.07 r 
0.0 1 .o CN 2.0 

FIG. 5. Log mean temperature difference correction factor F 
vs criterion number CN for SHE. 

tiveness. Therefore, the last relation indicates that for 
a high number of channels there could be some con- 
nection between the countercurrent SHE and the true 
cocurrent heat exchanger. 

This similarity was used by Martin et al. [1 1] to 
propose the countercurrent cascade set of (n/2) true 
cocurrent heat exchangers as the model which is 
thermally equivalent to SHE; however, his proposal 
had no theoretical background. The last formula 
enables proof of Martin’s former suggestion. 

In the previous paper [4] a similar straightforward 
formula for the Fcorrection factor was suggested. The 
achievement from ref. [4] has been derived analytically 
for the case R = 1 and extended to other quantities of 
R by using a hypothesis proposed by Roetzel. This 
hypothesis was also successfully applied to thermal 
analysis of other flow arrangements, e.g. cross-flow 
[14]. The formula for the criterion number CN, 
achieved in ref. [4] is 

C/v, = ZJ(NTU,NTU,,)J(xA,/A,). (22) 

The difference between the forms (21) and (22) 
developed here and in ref. [4] lies in the manner of 
calculating the mean value of NTU: 

l In the present paper NTU is calculated as the 
arithmetic mean value from NTU, and NTU,,. The 
formula (21) has a good theoretical background, but 
it fails for ratios R = 0 and R --) co, where factor F 
has to be equal to one. It is so because this theory was 
developed under conditions which exclude the large 
and small quantities of ratio R. 

l In ref. [4] the NTU is calculated as the geometric 
mean of NTU, and NTU,,. In contrast to the present 
analysis the form (22) works correctly (F = 1) for 
both limiting values of ratio : R = 0 and R + co. 

The arithmetic is greater than the geometric mean 
value if NTU, # NT&,, and both mean values are 
equal if NTU, = NTU,,. 

For the general applicability of equation (20) 
another mean value of NTU, and NTU,, would be 
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useful, which value should fall between the arithmetic 
and geometric mean and turn to zero for R + 0 or co. 
In the region NTU, z NTU,, it should approach the 
arithmetic mean value. 

These conditions are fulfilled by the logarithmic 
mean value and consequently the following formula 
could be recommended for the criterion number : 

NTU, - NTU,, 
CN* = In (NTU,/NTU,,) JbWJ. (23) 

Taking in the formula for CN the log mean value 
of NTU instead of the arithmetic mean is not a 
consequence of any thermal analysis, but only the 
proposal which works well in these domains of value 
R (R + 0, R + co) where the previous derivation loses 
its validity due to undeterminate quantities of the 
product : w = (JR+ l/JR)/2 and coefficients 
Taylor’s series (see equation (6)). 

in 

6. COMPARISON OF APPROXIMATE 

ACHIEVEMENTS WITH EXACT THEORY 

OF SHE 

6.1. Reference level for comparison 
Many simplifications were made on the way from 

equation (5) to the relation (21). They include : 

l ignorance of the real boundary conditions by 
considering the outermost and innermost turns in the 
same way as turns in the bulk part of SHE ; 

l replacement of temperature functions with moved 
independent arguments, by their differentials (accord- 
ing to Taylor’s theorem) ; 

l neglecting the components of the temperature 
functions with terms having cross-sectional number 
of transfer units with higher power ; 

l exclusion from analysis of the cases with extremely 
high or small heat capacity rate ratios (R = 0 and 
R+co), 

l neglecting of the term (R- I)/(1 + l/x:) in the 
denominator of equation (17). 

All these steps, although done for good physical or 
mathematical reasons, could weaken the reliability of 
the approximate theory. 

For this reason the approximate achievement pre- 
sented in equations (18) and (20) should be verified. 

To demonstrate how this approximate theory fits 
in with results of the exact thermal theory of SHE, 
the evaluation of effectiveness P, must be done for the 
whole field of solution. This is possible under the 
condition that there is access to the set of data with 
effectiveness of the counter flow SHE for different 
values of R, for different number of turns, for different 
values of minimal radii, and all of the calculations 
were done without any simplifications in comparison 
to a physical model. 

The exact theory of SHE with complete math- 
ematical accuracy in reference to the physical model 
is a subject of the study in ref. [2]. There, the effec- 

tiveness and the mean temperature difference have 
been calculated for heat capacity rate ratio : R = 0.0; 
0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0; 1.2; 
1.4; 1.6; 1.8;2.0;2.5;3.0;3.5;4.0;4.5;5.0;6.0;8.0 
and 10.0, for the number of turns n and minimal 
radius ri in SHE, denoted as (n;ri) : (4; I), (4;2), 
(4;3),(4;4),(6;2),(6;3),(6;4),(8;4),(8;5),(10;5), 
(12;5), (14;5), (l6;6), (l8;5), (20;5), (22;5), 
(24;5), (26;5), (28;5), (30;5), (32;5), (34;5), 
(36 ; 5), (38 ; 5) and (40 ; 5). 

As a geometrical basis for construction of SHE it 
was optionally assumed that the spiral was traced out 
as an involute from an equilateral triangle. This as- 
sumption differs slightly from the assumption taken 
into account in the present paper (see Section 2) but 
it fits in with the way of manufacturing the SHEs. 

The following proof of the actually presented 
theory for different parameters R and NTU in SHE 
is, in the main, a comparison of effectiveness Pi 
achieved on the basis of the formulas expressed by 
equations (18), (20) with the data for Pi taken from 
ref. [2]. Actually, the evaluations of results for both 
theories are done in three different ways according to 
the kind of parameters which are compared. 

The effectiveness P, of any heat exchanger can be 
calculated from the formula 

p 
I 
= 1 -exp [(R- l)NTU,F] 

l-Rexp[(R-l)NTU,FJ (24) 

in which the F correction factor takes into account 
the deviation from true counterllow. Solving for F 
yields 

F= In[l+(R-lM1/Pj-l)l 
(R- l)NTU, ’ (25) 

This will be the basis formula for the evaluation of 
present achievement in reference to the exact theory 
of SHE. 

6.2. Evaluation with regard to different number of turns 
The theory developed in this paper has been carried 

out under the assumption that the number of turns in 
SHE is high. But despite this limitation it is of interest 
to know, too, how adequate the theory is for a very 
small number of turns. An answer to this question is 
possible by using form (20). Thus, having the exact 
values: P, (taken from ref. [2]) and factor F from 
equation (25) one can reverse the function in equation 
(20) to find the value of hypothetical number CN, 
which gives this exact value P,. On the other hand, 
the real value CN could be calculated directly from 
equation (18). A quotient of both may be a reference 
level to demonstrate how close the approximate 
achievements of this paper are to the exact theory. Let 
one denote this quotient by f  and pass to the limit at 
R= 1 and$-rO: 

f  = !rnO CN/CNO. (26) 
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FIG. 6. Factor / = lim,,O.p-, CNJCN (kNo on the basis of 
exact theory [2] in comparison to present theory of SHE) as 

function of number of channels n for different radii r,,,,“. 

In Fig. 6 a set of points is shown which represents 
values of the f factor against number of turns in SHE. 

Indeed, an influence of the number of turns on the 
F factor has already been taken into account in the 
formula (18) by quotient A,/A,. Thus, the factor f 
can be understood as some further improvement of 
the criterion number regarding the minimal radius 
and the number of turns in SHE. With a growing 
number of turns the factor f  approaches unity, so that 
it can be assumed as equal to 1. 

6.3. Evaluation for very high NTUs and R = 1 
If the values of NTU are small, average or even 

high, up to 10 the effectiveness of SHE grows with 
increase of NT& and differs slightly from the effec- 
tiveness of the true counterllow exchanger ; however, 
not small enough to be ignored. 

But for very high NTU, > 10-30, and n > 6, as 
investigated in the refs. [l, 21, the effectiveness Pi 
achieves its maximum and further, and with increase 
of NTU starts to decrease, approaching finally the 
constant value (0.7-0.9) for unlimited NTUs. It is due 
to thermal conjunction between fluids which takes 
place throughout the side spiral (see Fig. 2), causing 
some return of heat flow and oscillations of the local 
temperature difference [2]. Equation (18) together 
with form (20) renders very well these properties of 
SHE, i.e. the maximum of Pi which is pointed out in 
Fig. 7. But for extremely high values the difference 
between both theories tends to grow. Finally, values 
P, calculated from equation (21) approach zero. 
For these quantities of NTU the theory loses its 
applicability. 

6.4. Evaluation with regard to heat capacity rate 
ratio R 

The analysis and comparison of results performed 
on the basis of both theories allows one to state that 
a key to the evaluation of SHE lies in the knowledge 
of function Pi for ratio R = 1 (see ref. [4]). 

To verify quantitatively the present theory and dis- 
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FIG. 7. Effectiveness P, of spiral heat exchanger vs mean 
temperature difference 0 for heat capacity rate ratio R = 1 
and different number II of channels (for n = 4,6,8, rmin = 2, 

3,4, respectively, and for n > 10, rmi, = 5). 

advantageous cases of numbers n = 4, 8, 12 and 16 
were analysed. 

In the diagram, mean temperature difference 0 vs 
effectiveness Pi, the most important area with respect 
to practical application is the region shaped as a tri- 
angle and limited by the lines 0 = 0, P, = 1 and 
NTU, = 1 (see Fig. 8). 

For a given small number of turns n where the 
conditions of the theory are not fulfilled, the lines with 
constant R are drawn on the basis of data from ref. 
[2]. The same procedure is repeated for data calculated 
using equation (20) under the conditions of equations 
(20) and (21). In the diagrams (Fig. 8) the lines with 
constant deviation of effectiveness P, expressed in per- 
centages, are shown 

7. CONCLUSIONS 

The problem of thermal analysis in countercurrent 
spiral heat exchangers was solved on the basis of the 
energy balance equations by using the regular math- 
ematical transformations ; however, with some approxi- 
mations, resulting in the straightforward formula 
for the log mean temperature difference correction 
factor: F=ln(1+CN2)/CN2. 

All thermal and geometrical parameters of SHE are 
combined in only one new dimensionless number CN 
which could be recognized as criterion number for 
SHE. 

The verification of the present approach allows 
testification that the approximate theory under con- 
sideration fits with the exact theory [2] expressed in 
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FIG. 8. Comparison of exact theory (thin lines) with present approximation (thick lines) for different 
number of channels: (a) n = 4, (b) n = 8, (c) n = 12, (d) n = 16, and rmin = 2, 4, 5 and 5, respectively. 

Quantities of equal difference (P,.npprul- Pi,..,) are marked in % with extra thick lines. 

terms of effectiveness Pi. The new theory appears 
useful for the design of countercurrent SHE. 
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